RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [BATCH 2016-19] B.A./B.Sc. SECOND SEMESTER (January – June) 2017 Mid-Semester Examination, March 2017

: 15/03/2017 Date Time : 11 am- 1 pm

CHEMISTRY (Honours)

Paper : II

Full Marks : 50

[8]

[2]

[Use a separate Answer Book for each group]

Group – A

[Attempt one question from each Unit]

Unit - I

1. The following rate data are found for gas phase reaction $3H_2 + N_2 \rightarrow 2NH_3$. a)

	P^0 (H ₂)	$P^0(N_2)$	$-d[P_{tot}]/dt$
	(mm Hg)	(mm Hg)	$(mm Hg Hr^{-1})$
Set 1	100	$1 \cdot 00$	0.01
Set 2	200	$1 \cdot 00$	0.04
Set 3	400	0.5	0.08

[P⁰ being the initial pressure]

- For the rate law, rate = $k[P(H_2)]^x[P(N_2)]^y$, find x and y. i)
- ii) Calculate $d[P(N_2)]/dt =$ for set 1 and time for $P(N_2)$ to drop to 0.05 for the same set. [4]
- b) For a 1st order reaction, show that $t_{1/n}$ is proportional to 'n'. $t_{1/n}$ is the time for [A], reactant, to decrease from $[A]_0$ to $\frac{1}{n}[A]_0$. [2]
- c) Determination of order using differential method can be disturbed if the reaction is a catalytic one. Justify.

The reaction $n - C_3 H_7 Br + S_2 O_3^{-2} \rightarrow C_3 H_7 S_2 O_3^{-1} + Br^{-1}$ in aq. solution is 1st order with both 2. a)

 $S_2O_3^{-2}$ and C_3H_7Br . At $37.5^{\circ}C$ the following data are obtained.

$10^{3}[S_{2}O_{3}^{-2}]$	96.6	90.4	86.3	76.6	66.8
t/ks	0	1.11	2.01	5.05	11.23

The initial concentration C_3H_7Br was 39.5 m mol/cm³. Find the rate constant. [3]

b) For a 1^{st} order opposing reaction, between A and A₂, find the integrated rate law in terms of x_e , where x_e is the amount of A_2 at equilibrium. [A = anthracene]. [3]

True or False? $[0.5\times4]$ c)

- For an elementary reaction, the partial orders are determined by the reaction stoichiometry. i)
- ii) Elementary reactions with molecularity greater than 3 don't occur, normally.
- iii) KCP can never be TCP.
- iv) Rate expression for the gaseous reaction is same to that in solutions.

[8] Unit – II

- a) With the help of a labelled schematic diagram prove that an engine with efficiency equal to one 3. can be coupled with another engine to transfer heat spontaneously from low to high temperature. [4]
 - What is the maximum possible efficiency of a heat engine that has a hot reservoir of water b) boiling under high pressure at 125°C and a cold reservoir at 25°C? [2]
 - Starting with Clausius inequality argue that the entropy of the universe is ever increasing. [2] c)

- 4. a) Write down the thermodynamic definition of entropy.
 - b) Prove that $dS > \frac{q}{T}$ for any irreversible process (Hint : For any irreversible cycle $\oint \frac{q}{T} < 0$) [2]

c) Prove that
$$\left(\frac{\partial S}{\partial V}\right)_{T} = \frac{\alpha}{\kappa}$$
 [the terms have their usual significance] [4]

Group – B

(Answer <u>any two</u> questions)

b) Both the given compounds (I) and (II) are tertiary bromides, but (I) undergoes ethanolysis 10⁶ times more rapidly than (II) —Explain.

c) State and explain, with an example, the principle of microscopic reversibility. [3]

6. a) Convert :

 $\bigcirc \longrightarrow \bigcirc \bigcirc$

Cyclohexene Cyclohexa-1,3-diene

- b) How can you establish that direct displacement reaction takes place with inversion of configuration at the reaction centre? [3]
- c) Complete the following reaction sequence and assign R/S descriptor to each product [3] Me (-)

7. a) How would you convert

(Give mechanism and explain the reaction)

b) Explain the following observation with an energy profile :

c) Write down the major product with reason

i)
$$\xrightarrow{\text{Cl}} \xrightarrow{\text{Et}_2\text{NH}}$$
 ii) $\xrightarrow{\text{Et}_2\text{NH}}$

[2]

[3]

[3]

[2]

[2×8]

[2]

[2]

8. a) Arrange the following ions in order of their leaving group capacity :

$$MeCOO^{(-)}, F_{3}CCOO^{(-)}, CF_{3}SO_{3}^{(-)}, CH_{3}SO_{3}^{(-)}, \bigvee_{Me} \overset{(-)}{\underset{NO_{2}}{}}, \bigvee_{NO_{2}} \overset{(-)}{\underset{NO_{2}}{}}$$

b) The following two reactions are basically esterification reactions having nearly same ΔH value, but more of ester is obtained from the second reaction than the first reaction —explain

i)
$$CH_3COOH + C_2H_5OH \xrightarrow{H^{\oplus}} CH_3COOC_2H_5 + H_2O$$

ii) $HOCH_2CH_2CH_2COOH \xrightarrow{H^{\oplus}} \sqrt{O} = O + H_2O$

- c) \longrightarrow_{Br} (neopentyl bromide) is very much inert towards direct displacement reaction, though it is a primary halide —explain.
- d) In the investigation of the mechanism of solvolysis (in 80% ETOH) of 2-chloro-2-methyl butane following results were obtained.
 [2]

i)
$$\operatorname{Me_2 C}_{|} - \operatorname{CD_2 Me} \left(\begin{array}{c} K_{\mathrm{H}} \\ K_{\mathrm{D}} \end{array} = 1.41 \right)$$

Cl

ii)
$$(CD_3)_2 \underset{\text{Cl}}{\overset{\text{}}{\text{C}}} - CH_2 Me \begin{pmatrix} K_{\text{H}} \\ K_{\text{D}} \end{pmatrix} = 1.78 \end{pmatrix}$$

Account for the above result

<u>Group – C</u> [Attempt <u>one question from each Unit]</u>

- 9. a) Explain with reasons :
 - i) Magnesium does not impart any colour to flame, while calcium does.
 - ii) Alkaline earth metals are harder, denser and have higher melting and boiling points than alkali metals.
 - b) Discuss the structure of basic beryllium acetate.
 - c) Discuss the complexation reaction of alkali metal ions with crown ethers. [3]
- 10. a) Describe the diagonal relationship of beryllium with aluminium.
 - b) The heat of reaction for Li(solid) + $nH_2O \rightarrow LiOH(soln) + \frac{1}{2}H_2(g)$ is -508.3 KJ/mol whereas it

is -469.5 KJ/mol for the reaction Na(solid) +
$$nH_2O \rightarrow NaOH(soln) + \frac{1}{2}H_2(g)$$
. Why is the

reaction of lithium with water much less vigorous than that of sodium with water? [3]

- c) How is lithium extracted from its ore?
- <u>Unit II</u>

- 11. a) Explain the following :
 - i) The thermal stability of gr.II metal carbonate— $BeCO_3$ (100°C), $MgCO_3(400°C)$, $CaCO_3$ (900°C), $SrCO_3$ (1290°C), $BaCO_3$ (1360°C) [2]

[2]

[2]

[2]

[2×2]

[2]

[3]

[3]

[9]

		ii) The solubility of alkali metal perchlorate	[2]				
		$LiClO_4$: $NaClO_4$: $KClO_4$					
		10 : 1 : 10^{-3}					
	b)	$SbCl_6^{3-}$ is regular octahedral where as XeF_6 is distorted octahedral, comment.	[3]				
	c)	Electron affinity of chlorine is higher than fluorine but fluorine is much more oxidising explain.	[2]				
12.	a)	ZnO is yellow when hot but white when cold, comment.					
	b)	Formation of divalent cations and anions are endothermic, yet MgO is a stable ionic solids,					
		explain.	[2]				
	c)	Calculate the limiting radius ratio for tetrahedral lattice (C.N.4) and comment. [2					
	d)	What happens when Na vapour was passed through NaCl crystals.	[2]				

_____ × _____